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Simplified Dynamic Analysis of Beams and Slabs with Tuned Mass Dampers 

As structural material properties are enhanced and structures become lighter and 

considerably more flexible with lower structural damping, excessive dynamic response in the 

form of large displacements or accelerations become more commonplace.  The dynamic 

loading may come from high energy dance or exercise activities (Photo 1) within buildings or 

synchronised groups of pedestrians on bridges. Such activities can occur over a range of 

frequencies coinciding with the fundamental natural frequency of the structure or structural 

element, thus causing resonance effects. Typically, structures with fundamental natural 

frequencies in a range of 1.5 to 4 Hz would be at risk. Such undesirable effects may be 

addressed by modifying the structure by changing its stiffness, increasing the overall 

structural damping or by the addition of a tuned mass damper (TMD) device. 

  

Photo 1 – Floor slab subject to dynamic loading 

Understanding the dynamic response of a structure or structural element can be a daunting 

task, particularly for practising engineers normally only concerned with the static design of 

structures. Many structural engineers will be familiar with the dynamic response of simple 

single-degree-of-freedom (SDOF) models. However, very few structures will correspond 

directly to such a form, which usually means computerised solutions are embarked upon, 

structures are radically altered, possibly needlessly, or problems passed to dynamics 

specialists. This paper simplifies the analysis to provide arithmetic solutions and a means of 

understanding the dynamic response of a structure. It would also provide a means to verify 

computer modelling and estimate the characteristics (mass, stiffness and damping) of a TMD 

to address any residual problematic dynamic response. This enables the design provision for 

the additional weight attached to the structure and the required space, if a TMD is deemed 
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to be necessary. A worked example of a simply supported welded steel box girder footbridge 

is given at the end of the paper. 

Structural beams and slabs generally consist of uniformly distributed mass and stiffness with 

many possible modes of vibration of increasing frequency. However, most dynamic response 

problems are associated with a single, usually primary, mode of vibration with the maximum 

displacement, for example, at or close to the mid-span of a simply-supported structure with 

a sine wave shape or function or the end of a cantilever with an ‘inverted’ cosine shape 

function (Figure 1).  
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 Figure 1 – Idealised Principal Modes of Vibration for Beams 

 

The proposed simplified approach makes the following assumptions:- 

• The mode shape (Eigenvector) is a sine wave, sine/cosine function or the deflected 

shape for the associated static loading. 

• The dynamic load (human dynamic input) is also in the form of a sine wave at the 

same frequency as the natural frequency of the structural mode of vibration being 

assessed. This will simulate resonance, which will result in the maximum response. 

• The structure is idealised as a SDOF system using generalised mass, damping and 

stiffness values (Figure 2). 
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 Figure 2 – Idealised Single Degree of Freedom Dynamic Model for Beams and Slabs 
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The circular frequency of the SDOF system,  is given as2, 

 = √
𝑘∗

𝑚∗
                             Equation 1 

The natural frequency, f, is then given by2,  

f = 
𝜔

2 𝜋
               Equation 2 

Where k* and m* are the generalised or equivalent stiffness (N/m) and mass of the structure 

(kg) for the particular mode of vibration of interest. The generalised damping, c* (kg/s), is 

usually assigned an average value for the structure.   

The generalised stiffness and mass may be determined by either adopting an assumed 

deflected shape function3 or calculating the deflection from the closed-form bending moment 

formula for the structure2. This enables the cross-checking of the evaluated parameters 

where both methods can be used, i.e. beam elements. As closed-form formulae aren’t 

available for slabs, only the assumed deflected shape function method can be used. 

The assumed deflected shape function is used by equating the external virtual work 

performed by the external loads with the internal work, so that the generalised stiffness and 

mass can be defined as follows3: 

k* = ∫ 𝐸 𝐼 (𝑥) (𝑓′′(𝑥))2 𝑑𝑥 +  ∑ 𝑘𝑖 𝑓 (𝑥𝑖)
2   Equation 3 

       m* = ∫ 𝑚 (𝑥) 𝑓(𝑥)2 𝑑𝑥 +  ∑ 𝑚𝑖  𝑓(𝑥𝑖)2         Equation 4 

Where E is Young’s Modulus, I is the moment of inertia of the structure at position x along 

the structure, f (x) is the shape function (Eigenvector) and f ’’(x) is the second differential of 

the shape function, m is the mass/metre, mi is the discrete mass at xi and ki is the discrete 

spring stiffness at xi.  The shape function (Eigenvector) is dimensionless and so the maximum 

displacement (y) should be taken as unity. 

The generalised mass and stiffness values can be determined for various beam and slab 

spanning conditions as follows. 

For a simply supported beam of uniform mass and stiffness, assuming a sine wave deflected 

form, sin  x/L (Figure 1a), equations 3 and 4 yield the following generalised mass and 

stiffness: 

    m* = m L/2 

    k* = 4 EI/(2 L3)        (see appendix for derivation) 

For a cantilever of uniform mass and stiffness, assuming a shape function of 1 – cos ( x / 2L) 

(Figure 1b), gives the following generalised mass and stiffness3: 
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    m* = 0.227 m L 

    k* = 4 EI/(32 L3)       (derived as for simply supported beam) 

Similarly, for a built-in beam of uniform mass and stiffness, assuming a shape function of ½ {1 

– cos (2 x / L)} (Figure 1c), gives the following generalised mass and stiffness values: 

m* = 3 m L/8 

    k* = 2 4 EI/ L3 

 

   y 

       a           a)                     b) 

 

            b       sin y/b        ½ (1 – cos 2y/b) 

        

       x 

             sin x/a 

a)                                                        a)  Simply supported 

     ½ (1 – cos 2x/a) 

b)                                                        b)  Built-in  

 

Figure 3 – Idealised Principal Modes of Vibration for Slabs 

 

For a simply supported isotropic slab, a similar approach may be used, assuming the following 

shape function3: 

    f (x,y) = sin x/a sin y/b 

Where a and b are the slab spans in the x and y directions, respectively (Figure 3). 

The generalised mass and stiffness are then given by the following formulae3: 

         m* = a∫ b∫ 𝑚 (𝑥, 𝑦) 𝑓(𝑥, 𝑦)2 𝑑𝑥 
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       k* = D a∫b∫ { [  
 𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2
 + 

 𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2
 ]2 – 2 (1 - )[ 

 𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2
 
 𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2
- ( 

 𝜕2𝑓(𝑥,𝑦)

𝜕𝑥 𝜕𝑦
 )2]} dx dy                                                                                 

Where D = the flexural rigidity of a uniform slab = E h3 / {12 (1 - 2)} per unit width of slab, E 

is Young’s Modulus, h is the slab depth and is the Poisson’s ratio. Alternative composite or 

other slab forms would need to be evaluated as an equivalent flexural rigidity. If the slab is 

orthotropic, for example using precast concrete or steel beams, the slab will probably behave 

more like a one-way spanning slab for which a beam-analogy approach should provide a 

reasonable estimate of the generalised parameters. Similarly, a large aspect ratio 

(length/width) isotropic slab will also predominantly behave like a one-way spanning slab. 

For a simply supported slab, evaluation of the above formulae yields the following generalised 

mass and stiffness: 

      m* = m ab/4 

k* = D 4 ( 1/2ab +  b/4a3 +  a/4b3 )  

For a built-in slab, the methodology can be extended by assuming the following shape 

function (Figure 3): 

   f (x,y) = ½ (1 - cos 2x/a) ½ (1 - cos 2y/b)  

This results in the following generalised mass and stiffness values: 

m* = 9m ab/64 

k* = D 4 ( 1/2ab + 3b/4a3 + 3a/4b3 )  

The condition of full fixity for slabs and beams would require continuity into substantial 

adjacent structures and so doesn’t occur that often in practice. Hence, in general, for built-in 

beams and slabs, some intermediate values would need to be estimated. 

Alternatively and indeed more accurately for beams, the generalised or equivalent mass and 

stiffness may be determined by considering the deflected shape based on the bending 

moment along the length of the beam3. By equating the strain energy stored in the spring to 

that stored in the beam as follows, 

    ½ k* x2 = ½ ∫ 𝑀 (𝑥) 
 𝑑

2
𝑥

𝑑 𝑦2   

    k* = ∫ 𝐸𝐼 (𝑥) 
 𝑑

2
𝑥

𝑑 𝑦2  𝑑𝑥  

From M (x) = EI 
 𝑑2𝑥

𝑑 𝑦2
 , and   

 𝑑2𝑥

𝑑 𝑦2
 = M/EI 
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By integrating twice and using the end conditions to resolve integration constants, the 

deflection, y, can be determined. The shape function is then found by equating the deflection 

to unity. 

This yields the following results for various beam support conditions - see Table 1 below 

(corresponding estimate from assumed shape function given in parenthesis): 

 

Beam condition  m*, mL    k*, EI/L3 

Cantilever   0.257 (0.227)   3.20A (3.04) 

Simply supported  0.504 (0.5)   48.15   (48.7) 

Built-in beam   0.406 (0.375)   204.8   (194.8) 

Continuous beamB  0.162    165.9 

Table 1 – Summary of generalised mass and stiffness values for beams2  

Note A – The value of ‘16’ quoted in the reference2 is believed to be a typographical error and should 

in fact have been given as ‘16/5’, i.e. 3.2. 

Note B – The continuous beam consists of 4 equal spans with one end built-in2.  Alternative continuous 

beam arrangements could be assessed using the same methodology. 

 

The effect of point loads at mid-span and in-plane loads can also be incorporated by extension 

of the above methodology2 to calculate the associated generalised or equivalent mass and 

stiffness. As there aren’t simple closed-form solutions for bending moments across a slab 

structure, it would be necessary to adopt the approximate solutions above assuming sine, 

cosine or similar shape functions.  

The damping in a structure is typically assumed to be an equivalent viscous damping ratio, i.e. 

damping proportional to velocity, and taken as a generalised or average value rather than 

with discrete dashpots or other damping devices. The damping ratio is defined in terms of the 

logarithmic decrement, , which can be related to the damping ratio, , as follows: 


𝛿

2 𝜋
      

The generalised damping, c*, can then be found from the following,  

                                                                c* = 2  m*           

Damping is also often given as a proportion or percentage of critical damping ( = 1), which is 

defined as follows: 
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             ccrit = 2 √𝑚 𝑘      

Typical values for logarithmic decrement, , are given in Eurocode 2, Part 26 and in various 

texts for percentages of critical damping5. 

The dynamic pedestrian loading can be modelled approximately as a sine wave and is given 

in the UK National Annex to Eurocode 1 Part 27, where the amplitude of the harmonic loading 

(sine wave) is given as follows: 

F = F0 k(fv) (1 + N – 1))0.5 

F0 is given as 280 N for walkers and 910 N for joggers. The factor k(fv) takes account of realistic 

pedestrian numbers and sensitivity to the mode frequency.  is a factor to take account of the 

unsynchronised nature of a pedestrian group and the bridge effective span. N is the number 

of pedestrians in accordance with clause NA.2.44.27. 

Crowd loading is dealt with in a similar manner to provide a uniformly distributed vertical 

pulsating harmonic load, w (NA.2.44.57). In order to model this in a simplified single-degree-

of-freedom system, it is suggested, as an approximation, that the proportion of the total 

distributed pulsating load, w, is taken as the same as the proportion of the generalised mass 

to the total mass, e.g. approximately 0.5 for a simply supported beam. 

The equation of motion1 for the simplified single degree of freedom system subjected to a 

harmonic dynamic load (Figure 2) is then: 

𝑚∗  𝑑2𝑦

𝑑 𝑡2  + 𝑐∗ 𝑑𝑦

𝑑𝑡
 + 𝑘∗𝑦 = 𝐹 sin 𝜔𝑡                  

Solving the above equation4 yields the following deflection and accelerations, 

𝑦𝑝 =  −
𝐹

𝑐∗𝜔
 cos 𝜔𝑡       𝑎 =  

𝐹 𝜔

𝑐∗  cos 𝜔𝑡 

   𝑦𝑝 𝑚𝑎𝑥 =  −
𝐹

𝑐∗𝜔
 

As the structure’s natural frequency is a function of structural stiffness and mass, 

investigations may be carried out using the formulae above or a computer model of the 

structure to modify the stiffness of the structure to achieve a sufficiently increased natural 

frequency and/or reduced acceleration.  

However, it may be found that significant changes to the dynamic response of the structure 

are not possible without substantial modification of the structure. It may therefore be 

concluded that by far the most pragmatic solution to reduce the acceleration response would 

be to fix a TMD to the structure and effectively dampen out the unacceptable displacements 

and accelerations. 
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Once the decision to incorporate a TMD has been taken, either provisionally or otherwise, the 

analysis could be carried out by hand calculation as described below or using suitable 

structural analysis programmes incorporating dynamic analysis. However, many structural 

computer programmes that incorporate dynamic analyses only allow a single generalised 

damping parameter rather than discrete damping elements. So the analysis method 

described below for the inclusion of a single discrete TMD with associated damping may be 

the only option available to determine the combined structure/TMD dynamic response 

without recourse to the purchase of the appropriate specialised software.  

TMD’s normally contain a vertically oscillating dead weight, usually solid steel, supported on 

springs. In parallel to the springs, damping elements are arranged, which can be adjusted to 

the required damping,  – see Figure 4 below. The relatively small mass of the TMD oscillates 

with a larger magnitude and just out of phase with the larger mass of the structure, which has 

the effect of suppressing the motion of the beam or slab. The TMD can be bolted to the 

structure in the most effective location. The device would be custom designed to fit in the 

available space within or underneath the structure. 

 

 

           2 

                 1      

            

           3 

           4 

           5  

1 Reinforced concrete deck 

2 Main steel beams 

3 Adjustable steel mass 

4 Adjustable vertical steel springs  

5 Adjustable damping elements 

 

Figure 4 – Tuned mass damper typical details   

The most effective location for a TMD would clearly be close to the location of maximum 

displacement indicated on Figure 1. It is possible that excessive displacements may occur at 

different locations due to other modes of vibration, in which case it may become necessary 

to add several TMD’s to deal with each problematic mode of vibration.  Extending the single 

0

0 
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degree of freedom simplification for the structure, the effect of adding a TMD can be 

modelled as indicated in Figure 5 below, where ct, kt, mt and yt are the respective damping, 

stiffness, mass and displacement of the TMD. 

 

 

                                                     c*                         k*        STRUCTURE 

                                                                               m*  

                                                                            F sin t                 y                       

                                                     ct                         kt        TUNED MASS DAMPER 

                                                                                mt  
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Figure 5 – Idealised Model of Structure and Tuned Mass Damper 

 

The equations of motion are then given by the following simultaneous differential equations1,

  

𝑚∗  𝑑2𝑦

𝑑 𝑡2  + 𝑐∗ 𝑑𝑦

𝑑𝑡
 + 𝑐𝑡

𝑑(𝑦−𝑦𝑡)

𝑑𝑡
 + 𝑘∗𝑦 + 𝑘𝑡(𝑦 − 𝑦𝑡) = 𝐹 sin 𝜔𝑡   

𝑚𝑡
 𝑑2𝑦𝑡

𝑑 𝑡2   + 𝑐𝑡
𝑑(𝑦𝑡−𝑦)

𝑑𝑡
  + 𝑘𝑡(𝑦𝑡 − 𝑦) = 0       

The solution4 yields the following result for the displacement and acceleration of the 

structure, 

𝑦𝑝 =  𝑀 sin 𝜔𝑡 +  𝑁 cos 𝜔𝑡 

𝑎 =  −𝑀 𝜔2  sin 𝜔𝑡 −  𝑁 𝜔2  cos 𝜔𝑡 

Where, 

𝑀 =
(𝑃 𝑄 − 𝑅 𝑆)

(𝑃2 +  𝑅2)
 

𝑁 =
(𝑄 − 𝑃 𝑀)

𝑅
 

𝑃 = 𝑚∗𝑚𝑡 𝜔4 − (𝑚𝑡𝑘∗ +  𝑐∗𝑐𝑡 +  𝑚∗𝑘𝑡 +  𝑚𝑡𝑘𝑡)𝜔2 +  𝑘𝑡𝑘∗ 

𝑄 = 𝐹 (𝑘𝑡 −  𝑚𝑡𝜔2) 



10 
 

𝑅 = (𝑚𝑡𝑐∗ +  𝑚𝑡𝑐𝑡 +  𝑚∗𝑐𝑡)𝜔3 − (𝑐𝑡 𝑘∗ + 𝑐∗𝑘𝑡)𝜔 

𝑆 = 𝐹 (𝑐𝑡 𝜔) 

The most effective frequency of the TMD is usually as close as possible to the natural 

frequency of the mode of vibration causing the excessive dynamic response. It is important, 

therefore, that the frequency of the structure is estimated accurately, otherwise it may prove 

difficult to fine tune the TMD on site to achieve the desired results.  

The frequency of the TMD is adjusted by changing the mass or modifying the springs. The 

damping can also be adjusted to optimise the effectiveness of the TMD. TMD’s can have 

masses in the range of 10 to 500,000 kg, but for footbridges, beams and slabs will typically 

range from 500 to 5,000 kg. The damping will typically be between 8 to 15% of critical with a 

wide range of applications, including seismic resistance and stabilisation of high frequency 

machinery. The resulting natural frequency of the TMD can be between 0.3 and 100 Hz, 

although to effectively dampen the motion of a structural element, it is likely to be of the 

order of 1.5 to 4 Hz. 

An acceptable displacement or acceleration can be determined by substituting the estimated 

structure properties and a range of TMD properties into the above equations. A typical TMD4 

(mass 2000 kg, spring stiffness 420500 N/m and damping 4350 kg/s as supplied by GERB), is 

shown in Photo 2 below. Resonant amplitudes of the order of several centimetres may be 

reduced to a millimetre or less, which would normally be virtually imperceptible.  

A trial TMD mass, say 5 to 10% of the structure generalised mass, can then be selected, which 

will dictate the TMD spring stiffness determined from equations 1 and 2. The process should 

then be repeated until the target maximum displacement or acceleration has been achieved. 

Once the mass of the TMD has been determined, the structure can be designed for the 

additional static weight and space requirements or provision made for its possible inclusion. 

Likewise, existing structures can be strengthened accordingly, if necessary. 

The final TMD design will be carried out by the TMD supplier using parameters provided by 

the structural designer, but the effects on the structure in terms of materials, dimensions and 

costs can be planned well in advance, so the structural designer can retain greater control 

over the design process.    
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 Photo 2  – Tuned Mass Damper Installed Under Footbridge Deck 

 

 

Simply Supported Steel Box Girder Footbridge Example 

Architectural demands for footbridges in high profile locations are likely to result in relatively 

slender solutions. A welded steel box girder solution may satisfy such requirements. This 

could be fabricated with a pre-camber to eliminate the self-weight sag with just the live load 

deflection affecting the in-service appearance. An assumed steel box girder footbridge, simply 

supported over a 30 metre span is shown in Figure 6 below. 
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     Deck plate 

             Stiffened ‘L’ edge beam 

 

       Web 

   

       Bottom flange plate 

Figure 6 – Welded Steel Box Girder Footbridge Section Example 

 

Bridge properties (Units – N, m, kg, s): 

Span    - 30 m 

Deck plate   - 2.0 x 0.02 m thick 

Web plate   - 0.85 x 0.012 m thick 

Flange plate   - 0.6 x 0.02 m thick 

Edge beam   - 0.3 x 0.25 x 0.015 m thick fabricated angle 

Section area   - 0.0889 m2 

Mass    - 1004 kg/m, including parapets and surfacing 

Moment of inertia  - 9.955 x 10-3 m4 

Modulus of elasticity  - 205 x 109 N/m2 

Logarithmic decrement - 0.02, for welded steel section6 

Using the formulae for generalised mass, stiffness and damping for a simply supported beam 

yields the following dynamic properties: 

Generalised mass, m*  - 15057 kg 

Generalised stiffness, k* - 3.681 x 106 N/m 

Generalised damping, c* - 1499 kg/s 
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Natural frequency, fb  - 2.489 Hz from formulae given above 

Circular frequency,   - 15.636 

With reference to the National Annex to Eurocode 17 the amplitude of the dynamic sinusoidal 

input loading, F, can be determined as follows:  

Fo   - 280 N, Table NA.8 

K(fv)   - 0.48, Table NA.8 

   - 0.24, Table NA.9 

N   - 16, Table NA.7, assumed access to major public facility 

F   - 288 N, using the given formula 

Applying the solutions given in the text above the maximum deflection and acceleration due 

to resonance are as follows: 

Max. acceleration  - 3.01 m/s  

Max. amplitude deflection - 12.3 mm 

In a prestigious high profile location, i.e. for access to a major public assembly facility, the 

above response is unlikely to be acceptable (exceeds maximum acceleration limit of 2.0 m/s 

given in NA.2.44.67) and so the application of a tuned mass damper would be an economical 

solution. In this example it should be possible to locate the TMD in the box at mid-span with 

an appropriately stiffened access opening. The natural frequency of the TMD should be 

relatively close to the bridge natural frequency and assuming a mass of approximately 10% of 

the generalised mass would lead to TMD properties approximately as follows: 

TMD natural frequency, ft - 2.60 Hz (selected) 

TMD mass, mt   - 1500 kg (selected) 

TMD stiffness, kt  - 400984 N/m (from ft = (kt/mt)0.5) 

TMD damping, ct  - 3679 kg/s (from TMD manufacturer) 

Applying the formulae for a TMD modified structure gives the following factor values: 

P  - -1.484 x 1011 kg2/s4 

Q - 9.872 x 106 N kg/s2 

R - 2.029 x 1010 kg2/s4 

S  - 1.658 x 107 N kg/s2 
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M - -0.080 mm.s 

N - -0.101 mm.s 

This yields the composite sinusoidal response as follows: 

𝑦𝑝 =  −0.080 sin 𝜔𝑡 −  0.101 cos 𝜔𝑡 

𝑎 =  0.080 𝜔2  sin 𝜔𝑡 +  0.101 𝜔2  cos 𝜔𝑡 

The amplitude and acceleration could be plotted or tabulated at, say, 0.01 second intervals 

to determine the maximum response as follows: 

Max. acceleration  - 0.03 m/s  

Max. amplitude deflection - 0.13 mm 

This should, under normal circumstances, be acceptable, but if more or less onerous 

conditions need to be satisfied, the mass, stiffness or damping properties of the TMD can be 

adjusted to suit the client’s requirements. 

Andrew Robertson (andrewsr7151@gmail.com) is an independent civil and structural 

engineering consultant based in Bergerac, France. 
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Appendix 

Evaluation of generalised mass and stiffness for simply supported beam 

m* = ∫ 𝑚 (𝑥) 𝑓(𝑥)2 𝑑𝑥 

 f (x) = sin x/L 

 f (x)2 = sin2 x/L = ½ (1 – cos 2 x/L) 

 ∫  𝑓(𝑥)2 𝑑𝑥 = ½ [x – (L/2) sin 2 x/L + C]L
0 = ½ L 

m* = m L/2 

k* = ∫ 𝐸 𝐼 (𝑥) (𝑓′′(𝑥))2 𝑑𝑥 

f’’ (x) = - (2/L2) sin x/L 

f’’ (x)2 = (4/L4) sin2 x/L 

 f’’ (x)2 = (4/L4) ½ (1 - cos 2x/L) 

 ∫  (𝑓′′(𝑥))2 𝑑𝑥 = [(4/L4) ½ (x – L/2 sin 2x/L + C)] L
0 = 4/2L3 

k* = EI 4/2L3 

 

 


