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Introduction 

The majestic splendour of the Millau Viaduct towering 343m above the Tarn valley in southern 

France (Photo 1 below) will inspire engineers for generations to come. Emulating such feats of 

engineering requires an understanding of buckling beyond the simple Euler formulae for pin-ended 

struts as well as the services of a celebrated architect to fine tune the proportions and sculpt the 

shape and details of the extraordinary pier supports. Exceptionally tall or slender columns may 

necessitate finite element modelling to determine the effects of buckling. However, in many cases 

an accurate assessment of the critical buckling load can be made by hand calculations incorporating 

spring supports or tapered/stepped stiffness columns. This paper discusses the calculation of the 

buckling load for the end conditions given in Eurocode 2, Figure 5.71, including various rotational 

spring restraints and variable stiffness within the length of the strut. 

 

Photo 1 – Millau Viaduct 

 

For many years engineers have come to rely on semi-empirical rules in British standards to 

determine the second order effects of buckling on first order bending effects and indeed most may 

continue to do so using Eurocodes. However, Eurocode offers the possibility to evaluate the critical 

buckling load from first principles, which may require the inclusion of the effects of rotational spring 

supports. Eurocode 21 provides 3 options to address the effects of buckling or secondary effects for 

slender columns/struts. These are based on non-linear second order analyses or 2 simpler methods - 

a curvature method or a method based on ‘nominal stiffness’. The curvature method, which appears 

to be the preferred option according to PD 6687-12, adopts a similar semi-empirical method used in 

BS 81103 based on the effective length and slenderness ratios. The magnification of bending effects 



due to buckling is addressed by assessing the effective length for various end conditions, which are 

evaluated descriptively and so provides a means to determine the ‘additional moments’. However, 

the National Annex to Eurocode 24 permits the alternative simpler method based on nominal 

stiffness, which requires the determination of the ‘buckling load based on nominal stiffness’.  

Struts with Pinned, Fixed and Free-end Conditions 

The buckling load is such that a condition is reached in which the ideal straight form of equilibrium 

becomes unstable and a small lateral force will produce a deflection which does not disappear when 

the load is removed. The critical ‘Euler’ load is then defined as the axial force which is sufficient to 

keep the strut in such a slightly bent form. The fundamental Euler buckling load for a pin-ended strut 

(for the general case, this is henceforth referred to as the critical buckling load, PCrit) is given as  

PEuler = 2E I/Le
2              (1) 

Where E is Youngs Modulus, I, the moment of inertia and Le is the length of the strut (half a sine 

wavelength, Figure 1a below), which also corresponds to the effective length as used in the 

curvature and nominal stiffness methods. The buckling load for struts with either fixed or pinned 

ends can generally be determined by a consideration of the relative length of the pin-ended buckling 

sine wave mode to the mode shape of a strut with different end conditions. For example, a strut 

with both ends fixed would buckle in the primary mode with a full wavelength sine wave (Figure 1c) 

and so the buckling load would be determined by substituting L/2 for Le in the above formula. The 

critical buckling loads (1st and 2nd modes) for the various combinations of pin and fixed ends are 

given in Figure 1 below. 

 

 

Top  -     Pinned         Pinned     Fixed           Fixed                        Fixed            Fixed 

Bottom -   Pinned         Pinned                        Fixed           Fixed                      Pinned          Pinned 

Pcrit  -         2 E I/L2       42 E I/L2                 42 E I/L2   8.18 2E I/L2         2 E I/(0.7L)2   2 E I/(0.407L)2 

Mode -        1st                 2nd                              1st                2nd                            1st                   2nd  

                    1(a)           1(b)                          1(c)           1(d)                       1(e)              1(f) 

 

Figure 1 – Struts with Pinned or Fixed Supports 

 



Typically, the critical buckling load for slender columns causes a magnification of the bending 

moments from lateral loads or initial eccentricities. The magnification factor, K, for bending 

moments in the strut has been found to be closely correlated with the critical buckling load as 

follows5: 

K = M*design/M1st order = 1 / (1 – P/PCrit)     * excludes load factors                              (2) 

This is similar to the recommended formula in Eurocode 21 (cl. 5.8.7.3).  

Determination of the various critical buckling loads discussed in this paper assumes linear elastic 

behaviour, which is generally applicable for slender columns. However, buckling may occur at lower 

loads for struts with L/ry ratios less than about 50, where non-linear buckling will occur5 (ry is the 

radius of gyration = (I/A)0.5). This aspect of buckling is outside the scope of this paper, but 

approximations of the buckling load for such cases may be obtained using the tangent modulus 

appropriate to the stress level associated with the buckling. Although, the magnification (see 

equation 2 above) of first order bending effects may still be determined from the linear elastic 

critical buckling load. It should also be noted that the critical buckling load excludes the effect of 

shear deformation. This is negligible for solid or thick-walled sections, i.e. for most concrete sections, 

but may become significant for braced steel truss struts. Torsional or combined lateral and torsional 

buckling is also usually insignificant for solid concrete sections. Reference should be made to 

relevant design charts and guidance for thin-walled open steel sections in Eurocode 36, i.e. for many 

standard or fabricated steel sections.  

For each case above, the buckling load will have an infinite number of solutions corresponding to 

multiple waves forming within the length of the strut. However, as these buckling loads are 

considerably higher than the primary modes they are usually only of academic interest. The second 

modes of buckling are given in Figure 1 above. These modes require either lateral loading on the 

strut to force the strut to buckle in the mode shown (indicated by horizontal arrows in Figure 1) or 

for the strut to be restrained at mid-height to prevent the primary buckling mode occurring. The 

secondary mode for a fixed-ended or rotationally restrained strut may also be relevant where 

columns are subjected to reverse bending (see Figure 1d above), e.g. for eccentricity effects. 

However, the end moments would need to be significant and of similar magnitude to ensure that 

the secondary mode of buckling occurs and the primary mode is prevented. This is acknowledged in 

the assessment of the ‘additional load’ in BS 81103, where the shape of the bending moment 

diagram affects the additional moment to be applied. For example, where the end moments are 

reversed and of similar magnitude, the additional moment is halved. This reflects the certainty of 

preventing the primary mode and buckling being associated with the much higher secondary mode 

of buckling. 
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                         Mode -           1st                  2nd                 3rd    

                         Pcrit      -     2 E I/(4L2)      92 E I/(4L2)     252 E I/(4L2) 

                                                      2a                    2b                    2c 

                                            Figure 2 – Free-standing cantilever strut 

 

The critical buckling load may be determined by consideration of the differential equation of 

bending for the strut, energy methods or slope deflection equations which satisfy the assumption of 

buckled shapes with minimal lateral loading. As the buckled shapes can be represented by 

trigonometric functions, it will be readily seen that multiple solutions can be justified corresponding 

to the number of waves within the length of the strut. For example, the differential equation for a 

cantilever strut – fixed at one end and free at the other results in the requirement to satisfy the 

following equation5: 

 cos kL = 0                                                                                        (3) 

Where  is the maximum deflection at the free end (Figure 2) and k is a constant of the differential 

equation (k = (P/EI)0.5) and P is the axial load, becoming Pcrit when equation 3 is satisfied. As  > 0, 

this equation is satisfied if kL = /2 (giving Pcrit = 2EI/(4L2)), but also by multiples of /2 as follows5: 

kL = (2n – 1) /2                                                                                 (4) 

Struts with Rotational Spring Supports 

It will be noted that there are significant differences between buckling loads for pinned and fixed 

rotational end supports and quite often some doubt about the assumption of fixity for supports. 

There is therefore a need to quantify the effects of rotational restraints at supports (Figure 3 below). 

The effect on the critical buckling load can be estimated by the methods used to determine the 

critical buckling for pinned or fixed support conditions. 
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 3a – Free-standing strut      3b – Spring-ended strut 

            

            Figure 3 – Struts with Rotational Spring Supports 

 

The critical buckling load for a free-standing strut with a rotational restraint at the base (Figure 3a) 

may be determined by considering the differential equation of bending and satisfying the end 

conditions. The critical buckling load can then be found by trial and error methods for the following 

equation5. 

k tan kL =  / (E I)                                                                                (5) 

Where, 

k = (P/EI)0.5 

P is the axial load, which becomes Pcrit when kL satisfies the above equation 

E is Youngs Modulus 

I is the Moment of Inertia of the column 

 is the rotational stiffness of the support  

L is the column height 

The value of ‘kL’ is varied, starting at slightly less than /2 (the maximum value for a fixed end 

support) and gradually reduced until the above equation is satisfied. This can be done easily enough 

using an Excel spreadsheet. Although care should be taken using the ‘Goal Seek’ facility, which can 

jump around finding a solution for higher modes even when it’s close to the correct value for the 

primary mode. So PCrit will be found from the following equation. 

Pcrit = (kL)2 E I / L2                                                                                          (6) 

An alternative approximate solution may be obtained using energy methods by equating the work 

done by the load,  WP, to the summation of the bending strain, UB, and strain energy in the 

rotational spring,  US, as follows. 

 WP = UB +  US                                                                                         (7) 



 WP = P dx = P ½ ∫ (dy/dx)2                                                                                (8) 

UB = [1/(2E I)] ∫ M2                                                                                             (9) 

 US = M /2 = M2/(2(10)

Where,     

P is the axial load 

dx is the vertical displacement at the top of the strut 

y =  (1 – cos (x/2L)) 

M = - P ( - y)  

 is the horizontal displacement at the top of the strut 

 is the rotation in the spring 

= M/) is the rotational stiffness of the support 

The critical buckling load for a free-standing strut is then given approximately by the following 

closed-form equation, using symbol designations given above: 

   Pcrit,e = 2 E I / [4L(L + (2 E I/ (4)))]                                                                (11) 

It can be seen that this satisfies the limiting conditions for  = ∞ (fixity), resulting in Pcrit = 2 E I/ 

(4L2), and for   = 0 (pinned), giving Pcrit = 0. This provides a relatively simple solution and avoids the 

trial and error process above. A range of approximate values have been checked against the 

accurate trial and error solution in Table 1 below. 

 

Rotational stiffness of 
base 

kNm/rad 

Pcrit (Trial and error 
method) 

kN 

Pcrit,e (Approx. energy 
method) 

kN 

100 (Pcrit,e – Pcrit) 
/Pcrit 

% Difference 

Fixed 36,553 36,553 0 
1.0 E8 36,539 36,440 -0.3 
5.0 E7 36,458 36,340 -0.3 
1.0 E7 36,378 35,565 -2.2 
5.0 E6 35,741 34,641 -3.1 
1.0 E6 29,656 28,688 -3.3 

Example – E = 10.0 E6 kN/m2, I = 0.08333 m2, L = 7.5 m 

Table 1 – Comparison of PCrit for free-standing column for trial and error and energy methods 

 

As can be seen from the table above, the approximate method gives a reasonably accurate 

assessment of the critical buckling load and a lower more conservative value. The error increases for 

lower rotational stiffness, but such values are probably associated with excessive deflections at the 

top of the column and so not relevant to most practical situations. 

The above solutions for free-standing columns (Equation 5 or 11) can also be used, by symmetry, for 

struts under sway conditions with spring supports at the top and bottom of equal value (see Figure 4 



below). So, the critical buckling load is the same as the free-standing strut for double the column 

height.  

 

 

                                                  

                             

Figure 4 – Sway strut with rotational spring supports (from symmetry with free-standing strut) 

 

Free-standing cantilevers are normally founded on substantial bases, which will offer near fixed-end 

conditions. However, the founding material may be such that some rotational flexibility may be 

present, which should be allowed for in the above equations. The rotational stiffness for spread 

footings (see Figure 5 below) may be determined from the following equations7. 

 

                       

 

Rotational stiffness about x,   x  = [G B3 (0.4 (L/B) + 0.1)]/(1 – v)                          (12) 

Rotational stiffness about y,   y  = [G B3 (0.47 (L/B)2.4 + 0.034)]/(1 – v)                (13) 

Adjustment factor for depth, x-dir xx = 1 + 2.5 (d/B) [(1 + (2d/B) (d/D)-0.2 (B/L)0.5)]     (14) 

Adjustment factor for depth, x-dir yy = 1 + 1.4 (d/L)0.6 [(1.5 + 3.7 (d/L)1.9(d/D)-0.6)]     (15) 

 

Figure 5 – Rotational stiffness for spread footing 



Example 

Free-standing bridge column (not subjected to impact loads) 

Section – 500 x 500, I = 0.00521 m4 

Modulus of elasticity = 10 E6 kN/m2 

Height – 7.5m 

Foundation – L x B = 3 x 3m, d = 1m thick, D = 1.25m (h = 0.75m) 

(Note – ‘L’ here refers to the length of the foundation to calculate x and xx, but elsewhere ‘L’ refers 

to the strut or column height)  

Soil – firm clay, average G = 5,000 KN/m2, Poisson’s ratio, v = 0.3 

Rotational stiffness, x= 9.643 E4 kNm/rad 

Depth factor, xx = 2.41 

PCrit = 2 E I / [4L(L + (2 E I/ (4)))] = 2,128 kN   (L – height of column, 7.5m) 

Effective length, Le =  (E I/ PCrit)0.5 = 15.545m (2.07 L) 

For fixed support, PCrit = 2 E I/(4L2) = 2,285 kN 

 

It can be seen that the rotational stiffness of the founding material can have an effect, although not 

usually substantial. If it becomes substantial, then piled foundations can be adopted. 

The critical buckling load for braced columns with rotational springs at both ends (see Figure 3b) can 

be solved using slope deflection equations as follows5. 

-Ma/ =0a + Ma L (u)/(3E I)  +  Mb L (u)/(6E I)                                  (16) 

-Mb/ =0b + Mb L (u)/(3E I)  +  Ma L (u)/(6E I)                                  (17) 

Where, 

Ma, Mb are the end moments 

0a,0b are the end rotations for pinned conditions 

(u) is a magnification function = (3/u) {(1/sin 2u) – (1/2u)} for the effects of the axial load 

(u) is a magnification function = (3/2u) {(1/2u) – (1/tan 2u)} for the effects of the axial load 

u = kL/2 = (L/2) (P/EI)0.5 

By solving for M and equating the denominator to zero, which would imply infinite bending, i.e. the 

critical buckling condition, an equation for solving the critical buckling is obtained as follows5. 

[(1/  + L (u)/ (3E I) ] [(1/  + L (u)/ (3E I)] – [L (u)/ (3E I)]2 = 0         (18) 

The equation is solved by varying ‘u’ by trial and error until the above condition is satisfied. The 

buckling load is then given by the following equation. 



PCrit = 4u2E I/L2                                                                                              (19) 

As for the free-standing strut/column, this is best solved by starting from the fixed end condition (u = 

but slightly less to avoid numerical problems) and gradually reducing the value of u until the 

above equation (Equation 18) equates to zero. For the purposes of evaluating the effect of varying 

the spring values compared to a weighted average [-)] value for the sway column given 

above, a range of values is shown in Table 2 below. A closed form solution is difficult, probably 

impossible, to obtain as the buckled shape varies from a single curvature to multi-curvature between 

the rotational spring limits, i.e. zero (pinned) to infinite (fixed). 

 



(kNm/ 
rad) 



(kNm/ 
rad) 

Pcrit (kN) 
(by trial 

and error) 

-) 
(kNm/ rad) 

Pcrit,ave (kN) 
(using wtd. 
average) 

100 (Pcrit,ave  -
Pcrit)/Pcrit 

% Difference 
Fixed Fixed 82,115 Fixed 82,115 0 
1.0 E6 2.0 E6 79,614 1.25 E6 79,451 -0.2 
1.0 E5 2.0 E5 62,588 1.25 E5 61,418 -1.9 
1.0 E4 2.0 E4 30,696 1.25 E4 29,411 -4.2 
1.0 E3 2.0 E3 21,708 1.25 E3 21,517 -0.9 
1.0 E6 4.0 E6 80,023 1.75 E6 80,198 0.2 
1.0 E5 4.0 E5 65,412 1.75 E5 66,087 1.0 
1.0 E4 4.0 E4 34,707 1.75 E4 32,412 -6.6 
1.0 E3 4.0 E3 22,448 1.75 E3 21,905 -2.4 

Example – E = 10.0 E6 kN/m2, I = 0.0052 m2, L = 5.0 m  

Table 2 – Comparison of P for braced strut with rotational spring supports by trial and error and 

weighted spring values and approximate method 

 

The value of PCrit using a weighted average stiffness gives similar or smaller values to the accurate 

trial and error method. A similar approach could therefore be used when adopting the solutions for 

the sway column with different (up to 4 times) rotational springs. The analyses for the sway column 

assumes both springs are equal, so where the variation in spring values is up to 4 times different, a 

weighted average [+ 0.25 ( - )] stiffness for both ends should give a reasonable estimate for PCrit, 

where  is the smaller spring stiffness.   

It is recommended in PD 66872 that the rotational stiffness in buildings should be based on 

connecting beams in the plane of buckling, ignoring the contribution from columns above and 

below. It also recommends that the stiffness of beams connected to the column should be taken as 

2EI/L to ‘allow for cracking’.  Alternatively, consideration may be given to using the full rotational 

stiffness of 4 EI/L with an appropriately adjusted I value for the actual degree of cracking. 

It should be noted that the rotational stiffness of connecting beams should be reduced to 2EI/L for 

symmetrical buckling conditions (see Figure 6 below)8, to which adjustment for cracking would need 

to be made. However, for sway conditions (anti-symmetric), the full rotational stiffness before 

cracking allowances would be 6EI/L.  

 

 



 

                  6a – symmetric                         6b – anti-symmetric                  6c – anti-symmetric sway 

                        (Braced)           (Braced)   (Unbraced) 

        beam= 2 EI/L       beam = 6 EI/L                             beam = 6 EI/L 

Figure 6 – Rotational stiffness of connecting beams for different buckling conditions 

The above discussion assumes constant section struts. The effect of varying the section by tapering 

or stepped changes (Figure 7 below) for free-standing struts (with fixed bases) can be determined 

for pin-ended conditions by hand calculation by adapting the differential equations of bending5. The 

effect of multiple step changes of section (Figure 7d) can be determined approximately by the 

conjugate beam method of analysis5. By symmetry – zero rotation at the base of a free-standing 

strut/column and mid-height of a pin-ended strut/column, the critical buckling load for pin-ended 

struts can be taken for double the length of the free-standing cantilever strut. Details of solutions of 

varying sections, as well as rotational spring supports, can be found in various texts5 or, for 

convenience, in spreadsheet form9. 

 

                     

  7(a) - Stepped             7(b) - Tapered        7(c) – Tapered/const.  7(d) – Multiple steps 

 

Figure 7 – Variable stiffness solutions by hand calculation 



Summary 

This paper reviews the more widely known critical buckling loads for support conditions at the limits 

(pinned, fixed or free) as an introduction to solutions for the following spring-supported 

struts/columns. 

• Free-standing struts/columns with rotational spring supports – solved by trial and error 

(Equation 5) or more conveniently, by an approximate closed-form formula (Equation 11). 

• Braced struts/columns supported at each end by rotational spring supports – solution by 

trial and error (Equation 18). 

• Sway struts/columns with rotational spring supports – by trial and error or closed-form 

formula for equal spring restraints (Equations 5 or 11) or an approximate method for spring 

ratios (one end to the other) of up to 4 using a weighted average rotational stiffness. 

It is hoped that the above provides a means to obtain solutions by hand calculations to most critical 

buckling problems either directly or indirectly through informed engineering judgement, i.e. by 

combining solutions, or, at least, a means of verifying solutions by finite element or frame analysis 

software programs.  
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